Rhino C++ API  8.6
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Friends | List of all members
ON_Surface Class Referenceabstract

#include <opennurbs_surface.h>

Inheritance diagram for ON_Surface:
ON_Geometry ON_Object ON_Extrusion ON_NurbsSurface ON_PlaneSurface ON_RevSurface ON_SumSurface ON_SurfaceProxy ON_ClippingPlaneSurface ON_BrepFace ON_OffsetSurface

Public Types

enum  ISO {
  not_iso = 0, x_iso = 1, y_iso = 2, W_iso = 3,
  S_iso = 4, E_iso = 5, N_iso = 6, iso_count = 7
}
 pure virtual class for surface objects More...
 
- Public Types inherited from ON_Object
enum  UserDataConflictResolution : unsigned char {
  UserDataConflictResolution::destination_object = 0, UserDataConflictResolution::source_object = 1, UserDataConflictResolution::source_copycount_gt = 2, UserDataConflictResolution::source_copycount_ge = 3,
  UserDataConflictResolution::destination_copycount_gt = 4, UserDataConflictResolution::destination_copycount_ge = 5, UserDataConflictResolution::delete_item = 6
}
 

Public Member Functions

 ON_Surface ()
 
 ON_Surface (const ON_Surface &)
 
virtual ~ON_Surface ()
 
bool AreaMassProperties (class ON_MassProperties &mp, bool bArea=true, bool bFirstMoments=true, bool bSecondMoments=true, bool bProductMoments=true, double rel_tol=1.0e-6, double abs_tol=1.0e-6) const
 
ON_BrepBrepForm (ON_Brep *brep=nullptr) const override
 
virtual ON_MeshCreateMesh (const ON_MeshParameters &mp, ON_Mesh *mesh=nullptr) const
 surface interface More...
 
virtual ON_SurfaceTreeCreateSurfaceTree () const
 
virtual int Degree (int dir) const =0
 
void DestroyRuntimeCache (bool bDelete=true) override
 virtual ON_Object::DestroyRuntimeCache override More...
 
void DestroySurfaceTree ()
 
virtual ON_Interval Domain (int dir) const =0
 
virtual ON_SurfaceDuplicateSurface () const
 
bool Ev1Der (double u, double v, ON_3dPoint &point, ON_3dVector &du, ON_3dVector &dv, int quadrant=0, int *hint=0) const
 
bool Ev2Der (double u, double v, ON_3dPoint &point, ON_3dVector &du, ON_3dVector &dv, ON_3dVector &duu, ON_3dVector &duv, ON_3dVector &dvv, int quadrant=0, int *hint=0) const
 
virtual bool Evaluate (double u, double v, int num_der, int array_stride, double *der_array, int quadrant=0, int *hint=0) const =0
 work horse evaluator More...
 
bool EvaluatePoint (const class ON_ObjRef &objref, ON_3dPoint &P) const override
 virtual ON_Geometry override More...
 
bool EvNormal (double u, double v, ON_3dPoint &point, ON_3dVector &du, ON_3dVector &dv, ON_3dVector &normal, int=0, int *=0) const
 
bool EvNormal (double u, double v, ON_3dPoint &point, ON_3dVector &normal, int quadrant=0, int *hint=0) const
 
bool EvNormal (double u, double v, ON_3dVector &normal, int quadrant=0, int *hint=0) const
 
bool EvPoint (double u, double v, ON_3dPoint &point, int quadrant=0, int *hint=0) const
 
virtual bool Extend (int dir, const ON_Interval &domain)
 
bool FrameAt (double u, double v, ON_Plane &frame) const
 
virtual bool GetClosestPoint (const ON_3dPoint &P, double *s, double *t, double maximum_distance=0.0, const ON_Interval *sdomain=0, const ON_Interval *tdomain=0) const
 
bool GetDomain (int dir, double *t0, double *t1) const
 
int GetIsoPushupDirection (const ON_Curve &curve_2d, double tolerance, const ON_Interval *curve_2d_subdomain, double *c, ON_Interval *c3_dom) const
 
virtual bool GetLocalClosestPoint (const ON_3dPoint &, double, double, double *, double *, const ON_Interval *=nullptr, const ON_Interval *=nullptr) const
 
virtual bool GetNextDiscontinuity (int dir, ON::continuity c, double t0, double t1, double *t, int *hint=nullptr, int *dtype=nullptr, double cos_angle_tolerance=ON_DEFAULT_ANGLE_TOLERANCE_COSINE, double curvature_tolerance=ON_SQRT_EPSILON) const
 
virtual int GetNurbForm (ON_NurbsSurface &nurbs_surface, double tolerance=0.0) const
 
virtual bool GetNurbFormParameterFromSurfaceParameter (double surface_s, double surface_t, double *nurbs_s, double *nurbs_t) const
 
virtual bool GetParameterTolerance (int dir, double t, double *tminus, double *tplus) const
 
bool GetSilhouette (const ON_Interval *udom, const ON_Interval *vdom, const ON_SilhouetteParameters parameters, const ON_PlaneEquation *clipping_planes, size_t clipping_plane_count, ON_ClassArray< ON_SIL_EVENT > &silhouettes, ON_ProgressReporter *progress, ON_Terminator *terminator) const
 
virtual bool GetSpanVector (int dir, double *span_vector) const =0
 
virtual bool GetSpanVectorIndex (int dir, double t, int side, int *span_vector_index, ON_Interval *span_interval) const
 
ON_CurveGetSurfaceParameterFromNurbFormParameter (const ON_Curve &curve3d, const ON_Curve &ns_curve2dX, double fit_tolerance) const
 
virtual bool GetSurfaceParameterFromNurbFormParameter (double nurbs_s, double nurbs_t, double *surface_s, double *surface_t) const
 
virtual bool GetSurfaceSize (double *width, double *height) const
 
bool HasBrepForm () const override
 
virtual int HasNurbForm () const
 
int IntersectPlane (ON_PlaneEquation plane_equation, ON_ClassArray< ON_SSX_EVENT > &x, double intersection_tolerance=0.0, double overlap_tolerance=0.0, double fitting_tolerance=0.0, const ON_Interval *surface_udomain=0, const ON_Interval *surface_vdomain=0) const
 
int IntersectSurface (const ON_Surface *surfaceB, ON_ClassArray< ON_SSX_EVENT > &x, double intersection_tolerance=0.0, double overlap_tolerance=0.0, double fitting_tolerance=0.0, const ON_Interval *surfaceA_udomain=0, const ON_Interval *surfaceA_vdomain=0, const ON_Interval *surfaceB_udomain=0, const ON_Interval *surfaceB_vdomain=0) const
 
int IsAtSeam (double s, double t) const
 
bool IsAtSingularity (double s, double t, bool bExact=true) const
 
virtual bool IsClosed (int) const
 
bool IsCone (ON_Cone *cone=nullptr, double tolerance=ON_ZERO_TOLERANCE) const
 
virtual bool IsContinuous (ON::continuity c, double s, double t, int *hint=nullptr, double point_tolerance=ON_ZERO_TOLERANCE, double d1_tolerance=ON_ZERO_TOLERANCE, double d2_tolerance=ON_ZERO_TOLERANCE, double cos_angle_tolerance=ON_DEFAULT_ANGLE_TOLERANCE_COSINE, double curvature_tolerance=ON_SQRT_EPSILON) const
 
bool IsCylinder (ON_Cylinder *cylinder=nullptr, double tolerance=ON_ZERO_TOLERANCE) const
 
virtual ISO IsIsoparametric (const ON_BoundingBox &bbox) const
 
virtual ISO IsIsoparametric (const ON_Curve &curve, const ON_Interval *curve_domain=nullptr) const
 
virtual ON_CurveIsoCurve (int dir, double c) const
 
virtual bool IsPeriodic (int) const
 
virtual bool IsPlanar (ON_Plane *plane=nullptr, double tolerance=ON_ZERO_TOLERANCE) const
 
virtual bool IsSingular (int) const
 
bool IsSolid () const
 
bool IsSphere (ON_Sphere *sphere=nullptr, double tolerance=ON_ZERO_TOLERANCE) const
 
bool IsTorus (ON_Torus *torus=nullptr, double tolerance=ON_ZERO_TOLERANCE) const
 
ON_3dVector NormalAt (double, double) const
 
ON_NurbsSurfaceNurbsSurface (ON_NurbsSurface *pNurbsSurface=nullptr, double tolerance=0.0, const ON_Interval *s_subdomain=nullptr, const ON_Interval *t_subdomain=nullptr) const
 
ON::object_type ObjectType () const override
 override ON_Object::ObjectType() - returns ON::surface_object More...
 
virtual ON_SurfaceOffset (double offset_distance, double tolerance, double *max_deviation=nullptr) const
 
ON_Surfaceoperator= (const ON_Surface &)
 
ON_3dPoint PointAt (double, double) const
 simple evaluation interface - no error handling More...
 
virtual ON_CurvePullback (const ON_Curve &curve_3d, double tolerance, const ON_Interval *curve_3d_subdomain=nullptr, ON_3dPoint start_uv=ON_3dPoint::UnsetPoint, ON_3dPoint end_uv=ON_3dPoint::UnsetPoint, ON_FitResult *rc=0) const
 
virtual ON_CurvePushup (const ON_Curve &curve_2d, double tolerance, const ON_Interval *curve_2d_subdomain=nullptr, ON_FitResult *rc=0) const
 
virtual bool Reverse (int)=0
 
virtual bool SetDomain (int dir, double t0, double t1)
 
bool SetDomain (int dir, ON_Interval domain)
 
unsigned int SizeOf () const override
 virtual ON_Object::SizeOf override More...
 
virtual int SpanCount (int dir) const =0
 number of smooth nonempty spans in the parameter direction More...
 
virtual bool Split (int dir, double c, ON_Surface *&west_or_south_side, ON_Surface *&east_or_north_side) const
 
const ON_SurfaceTreeSurfaceTree () const
 
virtual bool Transpose ()=0
 transpose surface parameterization (swap "s" and "t") More...
 
virtual bool Trim (int dir, const ON_Interval &domain)
 
bool VolumeMassProperties (class ON_MassProperties &mp, bool bVolume=true, bool bFirstMoments=true, bool bSecondMoments=true, bool bProductMoments=true, ON_3dPoint base_point=ON_3dPoint::UnsetPoint, double rel_tol=1.0e-6, double abs_tol=1.0e-6) const
 
- Public Member Functions inherited from ON_Geometry
 ON_Geometry ()=default
 
 ON_Geometry (const ON_Geometry &)=default
 
 ~ON_Geometry ()=default
 
ON_BoundingBox BoundingBox () const
 
virtual void ClearBoundingBox ()
 
virtual ON_COMPONENT_INDEX ComponentIndex () const
 
virtual int Dimension () const
 
virtual bool GetBBox (double *boxmin, double *boxmax, bool bGrowBox=false) const
 
bool GetBoundingBox (ON_3dPoint &bbox_min, ON_3dPoint &bbox_max, bool bGrowBox=false) const
 
bool GetBoundingBox (ON_BoundingBox &bbox, bool bGrowBox=false) const
 
virtual bool GetTightBoundingBox (class ON_BoundingBox &tight_bbox, bool bGrowBox=false, const class ON_Xform *xform=nullptr) const
 
virtual bool IsDeformable () const
 
virtual bool IsMorphable () const
 
bool IsValid (class ON_TextLog *text_log=nullptr) const override
 
virtual bool MakeDeformable ()
 
virtual bool Morph (const class ON_SpaceMorph &morph)
 
ON_Geometryoperator= (const ON_Geometry &)=default
 
bool Rotate (double rotation_angle, const ON_3dVector &rotation_axis, const ON_3dPoint &rotation_center)
 
bool Rotate (double sin_angle, double cos_angle, const ON_3dVector &rotation_axis, const ON_3dPoint &rotation_center)
 
bool Scale (double scale_factor)
 
virtual bool SwapCoordinates (int i, int j)
 
const ON_BoundingBox TightBoundingBox () const
 
virtual bool Transform (const ON_Xform &xform)
 
bool Translate (const ON_3dVector &translation_vector)
 
- Public Member Functions inherited from ON_Object
 ON_Object () ON_NOEXCEPT
 
 ON_Object (const ON_Object &)
 
virtual ~ON_Object ()
 
virtual ON_AggregateComponentStatus AggregateComponentStatus () const
 
bool AttachUserData (class ON_UserData *pUserData)
 
unsigned int ClearAllComponentStates () const
 
virtual unsigned int ClearComponentStates (ON_COMPONENT_INDEX component_index, ON_ComponentStatus states_to_clear) const
 
virtual unsigned int ClearComponentStates (ON_ComponentStatus states_to_clear) const
 
void CopyUserData (const ON_Object &source_object)
 
unsigned int CopyUserData (const ON_Object &source_object, ON_UUID source_userdata_item_id, ON_Object::UserDataConflictResolution userdata_conflict_resolution)
 
virtual ON__UINT32 DataCRC (ON__UINT32 current_remainder) const
 
virtual bool DeleteComponents (const ON_COMPONENT_INDEX *ci_list, size_t ci_count)
 
bool DetachUserData (class ON_UserData *pUserData)
 
virtual void Dump (ON_TextLog &) const
 
void EmergencyDestroy ()
 
class ON_UserDataFirstUserData () const
 
virtual unsigned int GetComponentsWithSetStates (ON_ComponentStatus states_filter, bool bAllEqualStates, ON_SimpleArray< ON_COMPONENT_INDEX > &components) const
 
class ON_UserDataGetUserData (const ON_UUID &userdata_uuid) const
 
bool GetUserString (const wchar_t *key, ON_wString &string_value) const
 
int GetUserStringKeys (ON_ClassArray< ON_wString > &user_string_keys) const
 
int GetUserStrings (ON_ClassArray< ON_UserString > &user_strings) const
 
bool IsCorrupt (bool bRepair, bool bSilentError, class ON_TextLog *text_log) const
 
bool IsKindOf (const ON_ClassId *pClassId) const
 
virtual void MarkAggregateComponentStatusAsNotCurrent () const
 
virtual void MemoryRelocate ()
 
virtual ON_UUID ModelObjectId () const
 
void MoveUserData (ON_Object &source_object)
 
unsigned int MoveUserData (ON_Object &source_object, ON_UUID source_userdata_item_id, ON_Object::UserDataConflictResolution userdata_conflict_resolution, bool bDeleteAllSourceItems)
 
ON_Objectoperator= (const ON_Object &)
 
void PurgeUserData ()
 
virtual bool Read (ON_BinaryArchive &binary_archive)
 
virtual unsigned int SetComponentStates (ON_COMPONENT_INDEX component_index, ON_ComponentStatus states_to_set) const
 
virtual unsigned int SetComponentStatus (ON_COMPONENT_INDEX component_index, ON_ComponentStatus status_to_copy) const
 
bool SetUserString (const wchar_t *key, const wchar_t *string_value)
 
int SetUserStrings (int count, const ON_UserString *user_strings, bool bReplace)
 
bool ThisIsNullptr (bool bSilentError) const
 
void TransformUserData (const class ON_Xform &xform)
 
virtual bool UpdateReferencedComponents (const class ON_ComponentManifest &source_manifest, const class ON_ComponentManifest &destination_manifest, const class ON_ManifestMap &manifest_map)
 
int UserStringCount () const
 
virtual bool Write (ON_BinaryArchive &binary_archive) const
 

Static Public Member Functions

static class ON_NurbsSurfaceCreateCubicLoft (int curve_count, const ON_Curve *const *curve_list, double k, int is_closed=0, ON::cubic_loft_end_condition start_shape=ON::cubic_loft_ec_quadratic, ON::cubic_loft_end_condition end_shape=ON::cubic_loft_ec_quadratic, class ON_NurbsSurface *nurbs_surface=0)
 
static class ON_NurbsSurfaceCreateLinearLoft (int curve_count, const ON_Curve *const *curve_list, double k, int is_closed=0, class ON_NurbsSurface *nurbs_surface=0)
 

Protected Member Functions

ON_CurvePullbackCurveProxy (const ON_CurveProxy &curveproxy_3d, double tolerance, const ON_Interval *curve_3d_subdomain, ON_3dPoint start_uv, ON_3dPoint end_uv, ON_FitResult *rc) const
 Helper for ON_Surface::Pullback overrides that handles "real" curve issues. More...
 
ON_CurvePullbackPolyCurve (const ON_PolyCurve &polycurve_3d, double tolerance, const ON_Interval *curve_3d_subdomain, ON_3dPoint start_uv, ON_3dPoint end_uv, ON_FitResult *rc) const
 
ON_CurvePushupCurveProxy (const ON_CurveProxy &curveproxy_2d, double tolerance, const ON_Interval *curve_2d_subdomain, ON_FitResult *rc) const
 Helper for ON_Surface::Pushup overrides that handles "real" curve issues. More...
 
ON_CurvePushupPolyCurve (const ON_PolyCurve &polycurve_2d, double tolerance, const ON_Interval *curve_2d_subdomain, ON_FitResult *rc) const
 

Friends

ON_CurveTL_Surface_PullbackHelper (const ON_Surface &, const ON_Curve &, double, const ON_Interval *, ON_3dPoint, ON_3dPoint, ON_FitResult *)
 
ON_CurveTL_Surface_PushupHelper (const ON_Surface &, const ON_Curve &, double, const ON_Interval *, ON_FitResult *)
 

Additional Inherited Members

- Static Public Attributes inherited from ON_Geometry
const static ON_Geometry Unset
 

Member Enumeration Documentation

◆ ISO

pure virtual class for surface objects

flags for isoparametric curves note: odd values are all "x" = constant and even values > 0 are all "y" = constant ON_BrepTrim::m_iso uses these flags

Enumerator
not_iso 

curve is not an isoparameteric curve

x_iso 

curve is a "x" = constant (vertical) isoparametric curve in the interior of the surface's domain

y_iso 

curve is a "y" = constant (horizontal) isoparametric curve in the interior of the surface's domain

W_iso 

curve is a "x" = constant isoparametric curve along the west side of the surface's domain

S_iso 

curve is a "y" = constant isoparametric curve along the south side of the surface's domain

E_iso 

curve is a "x" = constant isoparametric curve along the east side of the surface's domain

N_iso 

curve is a "y" = constant isoparametric curve along the north side of the surface's domain

iso_count 

Constructor & Destructor Documentation

◆ ON_Surface() [1/2]

ON_Surface::ON_Surface ( )

◆ ON_Surface() [2/2]

ON_Surface::ON_Surface ( const ON_Surface )

◆ ~ON_Surface()

virtual ON_Surface::~ON_Surface ( )
virtual

Member Function Documentation

◆ AreaMassProperties()

bool ON_Surface::AreaMassProperties ( class ON_MassProperties mp,
bool  bArea = true,
bool  bFirstMoments = true,
bool  bSecondMoments = true,
bool  bProductMoments = true,
double  rel_tol = 1.0e-6,
double  abs_tol = 1.0e-6 
) const

Description: Calculate area mass properties of the surface. Parameters: mp - [out] bArea - [in] true to calculate area bFirstMoments - [in] true to calculate area first moments, area and area centroid. bSecondMoments - [in] true to calculate area second moments. bProductMoments - [in] true to calculate area product moments. Returns: True if successful.

◆ BrepForm()

ON_Brep* ON_Surface::BrepForm ( ON_Brep brep = nullptr) const
overridevirtual

Description: Overrides virtual ON_Geometry::HasBrepForm.
Uses ON_Brep::Create( ON_Surface&* ) to create a brep form. The surface is copied for use in the returned brep. Parameters: brep - [in] if not nullptr, brep is used to store the brep form of the surface. Result: Returns a pointer to on ON_Brep or nullptr. If the brep parameter is not nullptr, then brep is returned if the surface has a brep form and nullptr is returned if the geometry does not have a brep form. Remarks: The caller is responsible for managing the brep memory.

Reimplemented from ON_Geometry.

◆ CreateCubicLoft()

static class ON_NurbsSurface* ON_Surface::CreateCubicLoft ( int  curve_count,
const ON_Curve *const *  curve_list,
double  k,
int  is_closed = 0,
ON::cubic_loft_end_condition  start_shape = ON::cubic_loft_ec_quadratic,
ON::cubic_loft_end_condition  end_shape = ON::cubic_loft_ec_quadratic,
class ON_NurbsSurface nurbs_surface = 0 
)
static

Description: Create a cubic nurbs surface that interpolates a list of curves.

Parameters: curve_count - [in] >= 2 number of curves

curve_list - [in] array of pointers to curves. These curves define the location of the The returned surface's "v" parameter

k - in or k = ON_UNSET_VALUE k determines how the surface's m_knot[0] values are calculated. Most frequently, 0.0, 0.5, or 1.0 should be used. 0.0: uniform 0.5: sqrt(chord length) 1.0: chord length In general, when k >= 0.0, then spacing is pow(d,k), where d is the average distance between the curves defining the span. ON_UNSET_VALUE: the intepolation knot vector is explicitly specified. The knots in the interpolated direction are specified. You must understand the mathematics of NURBS surfaces to use this option. To specify an explicit knot vector for the interpolation, the nurbs_suface parameter must be non-null, nurbs_surface->m_order[0] must be 4. The value of nurbs_surface->m_cv_count[0] must be set as described in the is_closed parameter section. The array nurbs_surface->m_knot[0][] must have length nurbs_surface->m_cv_count[0]+2, and the values in nurbs_surface->m_knot[0][2, ..., nurbs_surface->m_cv_count[0]-1] must be strictly increasing. is_closed - [in] 0: open curve_count must be at least 2. The resulting nurbs_surface will have m_cv_count[0] = curve_count+2. 1: closed curve_count must be at least 3. Do not include a duplicate of the start curve as the last curve in the list. The resulting nurbs_surface will have m_cv_count[0] = curve_count+3. 2: periodic curve_count must be at least 3. The resulting nurbs_surface will have m_cv_count[0] = curve_count+3.

start_shape - [in] end_shape - [in] The start_shape and end_shape parameters determine the starting and ending shape of the lofted surface.

Simple shapes: The simple end conditions calculate the rows of free control points based on the locations of the input curves and do not require additional input information. ON::cubic_loft_ec_quadratic: quadratic ON::cubic_loft_ec_linear: linear ON::cubic_loft_ec_cubic: cubic ON::cubic_loft_ec_natural: natural (zero 2nd derivative)

Explicit shapes: ON::cubic_loft_ec_unit_tangent: unit tangent is specified ON::cubic_loft_ec_1st_derivative: first derivative is specified ON::cubic_loft_ec_2nd_derivative: second derivative is specified ON::cubic_loft_ec_free_cv: free control vertex is specified

In order to specify explicit end conditions, curve_count must be at least 3, is_closed must be 0 or 1, the nurbs_surface parameter must be non-null, the nurbs_surface control points must be allocated, nurbs_surface->m_cv_count[0] must be set as described under the is_closed parameter, and the input curves must have nurbs curve formats that are compatible with the number of control points nurbs_surface->m_cv_count[1] and knots in nurbs_surface->m_knot[1]. The values of the starting shape points are specified in nurbs_surface->CV(1,...) and the values of ending shape points are specified in nurbs_surface->CV(curve_count,...). A good way to specify explicit shapes is to call CreateCubicLoft() with ON::cubic_loft_ec_quadratic as the condition parameters, modify the returned surface's end condition CVs as desired, and then call CreateCubicLoft() with the explicit end condition option. This way you will be sure to have a properly initialized nurbs_surface.

nurbs_surface - [in] If not null, the result will returned in this ON_NurbsSurface. Typically, this parameter is used when you want to store the result in an ON_NurbsSurface that is on the stack. This parameter is also used when you want to specify the interpolation knots or end conditions.

Returns: If successful, a pointer to the surface is returned. If the input nurbs_surface parameter was null, then this surface is on the heap and will need to be deleted to avoid memory leaks. If the input is not valid, null is returned, even when nurbs_surface is not null.

Example:

/ EXAMPLE 1: Loft a surface through a list of curves ON_SimpleArray< const ON_Curve* > curve_list = ....; ON_NurbsSurface* srf = ON_Surface::CreateCubicLoft( curve_list.Count(), curve_list, 0.5 ///< sqrt(chord length) spacing );

/ EXAMPLE 2: Create adjacent surfaces with an identical shared edge. / First make two curve lists with / curve_listA.Count() == curve_listB.Count() and / curve_listA[i]->PointAtEnd() == curve_listB[i]->PointAtStart() ON_SimpleArray< const ON_Curve* > curve_listA = ....; ON_SimpleArray< const ON_Curve* > curve_listB = ....; curve_count = curve_listA.Count(); ON_NurbsSurface* srfA = 0; ON_NurbsSurface* srfB = 0; if ( curve_count == curve_listB.Count() ) { srfA = ON_Surface::CreateCubicLoft( curve_count, curve_listA.Array(), 1.0 ///< chord length spacing ); if (0 != srfA) { srfB = new ON_NurbsSurface(); int knot_count0 = srfA->KnotCount(0); srfB->ReserveKnotCapacity(0,knot_count0); memcpy(srfB->m_knot[0],srfA->m_knot[0],knot_count0*sizeof(srfB->m_knot[0][0])) if ( 0 == ON_Surface::CreateCubicLoft( curve_count, curve_listB.Array(), ON_UNSET_VALUE, ///< knots specified in srfB->m_knot[0] 0, ///< open loft ON::cubic_loft_ec_quadratic, ON::cubic_loft_ec_quadratic, srfB ) ) { / clean up to prevent memory leaks delete srfB; srfB = 0; } } }

◆ CreateLinearLoft()

static class ON_NurbsSurface* ON_Surface::CreateLinearLoft ( int  curve_count,
const ON_Curve *const *  curve_list,
double  k,
int  is_closed = 0,
class ON_NurbsSurface nurbs_surface = 0 
)
static

Description: Create a linear nurbs surface that interpolates a list of curves.

Parameters: curve_count - [in] >= 2 number of curves

curve_list - [in] array of pointers to curves. These curves define the location of the The returned surface's "v" parameter

k - in or k = ON_UNSET_VALUE k determines how the surface's m_knot[0] values are calculated. Most frequently, 0.0, or 1.0 should be used. 0.0: uniform 0.5: sqrt(chord length) 1.0: chord length In general, when k >= 0.0, then spacing is pow(d,k), where d is the average distance between the curves defining the span. ON_UNSET_VALUE: the intepolation knot vector is explicitly specified. The knots in the interpolated direction are specified. You must understand the mathematics of NURBS surfaces to use this option. To specify an explicit knot vector for the interpolation, the nurbs_suface parameter must be non-null, nurbs_surface->m_order[0] must be 2. The value of nurbs_surface->m_cv_count[0] must be set as described in the is_closed parameter section. The array nurbs_surface->m_knot[0][] must have length nurbs_surface->m_cv_count[0], and the values in nurbs_surface->m_knot[0][] must be strictly increasing. is_closed - [in] 0: open curve_count must be at least 2. The resulting nurbs_surface will have m_cv_count[0] = curve_count. 1: closed curve_count must be at least 3. Do not include a duplicate of the start curve as the last curve in the list. The resulting nurbs_surface will have m_cv_count[0] = curve_count+1.

nurbs_surface - [in] If not null, the result will returned in this ON_NurbsSurface. Typically, this parameter is used when you want to store the result in an ON_NurbsSurface that is on the stack. This parameter is also used when you want to specify the interpolation knots.

Returns: If successful, a pointer to the surface is returned. If the input nurbs_surface parameter was null, then this surface is on the heap and will need to be deleted to avoid memory leaks. If the input is not valid, null is returned, even when nurbs_surface is not null.

Example:

/ EXAMPLE 1: Loft a surface through a list of curves ON_SimpleArray< const ON_Curve* > curve_list = ....; ON_NurbsSurface* srf = ON_Surface::CreateLinearLoft( curve_list.Count(), curve_list, 1.0 ///< chord length spacing );

◆ CreateMesh()

virtual ON_Mesh* ON_Surface::CreateMesh ( const ON_MeshParameters mp,
ON_Mesh mesh = nullptr 
) const
virtual

surface interface

Description: Computes a polygon mesh approximation of the surface.
Parameters: mp - [in] meshing parameters mesh - [in] if not nullptr, the surface mesh will be put into this mesh. Returns: A polygon mesh of the surface. Remarks: This virtual function works in the openNURBS that is part of the Rhino SDK. The source code for this functionality is not provided in the free openNURBS toolkit.

Reimplemented in ON_BrepFace, ON_NurbsSurface, ON_Extrusion, ON_SumSurface, ON_RevSurface, ON_SurfaceProxy, and ON_PlaneSurface.

◆ CreateSurfaceTree()

virtual ON_SurfaceTree* ON_Surface::CreateSurfaceTree ( ) const
virtual

◆ Degree()

virtual int ON_Surface::Degree ( int  dir) const
pure virtual
Parameters
dirreturns maximum algebraic degree of any span ( or a good estimate if curve spans are not algebraic ) 0 gets first parameter's domain, 1 gets second parameter's domain

Implemented in ON_NurbsSurface, ON_SumSurface, ON_RevSurface, ON_PlaneSurface, ON_SurfaceProxy, and ON_Extrusion.

◆ DestroyRuntimeCache()

void ON_Surface::DestroyRuntimeCache ( bool  bDelete = true)
overridevirtual

virtual ON_Object::DestroyRuntimeCache override

Reimplemented from ON_Object.

Reimplemented in ON_SurfaceProxy.

◆ DestroySurfaceTree()

void ON_Surface::DestroySurfaceTree ( )

If the geometry surface is modified in any way, then call DestroySurfaceTree().

◆ Domain()

virtual ON_Interval ON_Surface::Domain ( int  dir) const
pure virtual
Parameters
dir0 gets first parameter's domain, 1 gets second parameter's domain

Implemented in ON_NurbsSurface, ON_SumSurface, ON_RevSurface, ON_PlaneSurface, ON_SurfaceProxy, and ON_Extrusion.

◆ DuplicateSurface()

virtual ON_Surface* ON_Surface::DuplicateSurface ( ) const
virtual

Description: Get a duplicate of the surface. Returns: A duplicate of the surface.
Remarks: The caller must delete the returned surface. For non-ON_SurfaceProxy objects, this simply duplicates the surface using ON_Object::Duplicate. For ON_SurfaceProxy objects, this duplicates the actual proxy surface geometry and, if necessary, transposes the result to that the returned surfaces's parameterization and locus match the proxy surface's.

Reimplemented in ON_SurfaceProxy.

◆ Ev1Der()

bool ON_Surface::Ev1Der ( double  u,
double  v,
ON_3dPoint point,
ON_3dVector du,
ON_3dVector dv,
int  quadrant = 0,
int *  hint = 0 
) const
Parameters
ureturns false if unable to evaluate
vevaluation parameters (s,t)
pointreturns value of surface
dufirst partial derivatives (Ds)
dv(Dt)
quadrantoptional - determines which side to evaluate from 0 = default 1 from NE quadrant 2 from NW quadrant 3 from SW quadrant 4 from SE quadrant
hintoptional - evaluation hint (int[2]) used to speed repeated evaluations

◆ Ev2Der()

bool ON_Surface::Ev2Der ( double  u,
double  v,
ON_3dPoint point,
ON_3dVector du,
ON_3dVector dv,
ON_3dVector duu,
ON_3dVector duv,
ON_3dVector dvv,
int  quadrant = 0,
int *  hint = 0 
) const
Parameters
ureturns false if unable to evaluate
vevaluation parameters (s,t)
pointreturns value of surface
dufirst partial derivatives (Ds)
dv(Dt)
duusecond partial derivatives (Dss)
duv(Dst)
dvv(Dtt)
quadrantoptional - determines which side to evaluate from 0 = default 1 from NE quadrant 2 from NW quadrant 3 from SW quadrant 4 from SE quadrant
hintoptional - evaluation hint (int[2]) used to speed repeated evaluations

◆ Evaluate()

virtual bool ON_Surface::Evaluate ( double  u,
double  v,
int  num_der,
int  array_stride,
double *  der_array,
int  quadrant = 0,
int *  hint = 0 
) const
pure virtual

work horse evaluator

Parameters
ureturns false if unable to evaluate
vevaluation parameters
num_dernumber of derivatives (>=0)
array_stridearray stride (>=Dimension())
der_arrayarray of length stride*(ndir+1)*(ndir+2)/2
quadrantoptional - determines which quadrant to evaluate from 0 = default 1 from NE quadrant 2 from NW quadrant 3 from SW quadrant 4 from SE quadrant
hintoptional - evaluation hint (int[2]) used to speed repeated evaluations

Implemented in ON_NurbsSurface, ON_RevSurface, ON_SumSurface, ON_PlaneSurface, ON_SurfaceProxy, ON_OffsetSurface, and ON_Extrusion.

◆ EvaluatePoint()

bool ON_Surface::EvaluatePoint ( const class ON_ObjRef objref,
ON_3dPoint P 
) const
overridevirtual

virtual ON_Geometry override

Reimplemented from ON_Geometry.

◆ EvNormal() [1/3]

bool ON_Surface::EvNormal ( double  u,
double  v,
ON_3dPoint point,
ON_3dVector du,
ON_3dVector dv,
ON_3dVector normal,
int  = 0,
int *  = 0 
) const
Parameters
ureturns false if unable to evaluate
vevaluation parameters (s,t)
pointreturns value of surface
dufirst partial derivatives (Ds)
dv(Dt)
normalunit normal

◆ EvNormal() [2/3]

bool ON_Surface::EvNormal ( double  u,
double  v,
ON_3dPoint point,
ON_3dVector normal,
int  quadrant = 0,
int *  hint = 0 
) const
Parameters
ureturns false if unable to evaluate
vevaluation parameters (s,t)
pointreturns value of surface
normalunit normal
quadrantoptional - determines which side to evaluate from 0 = default 1 from NE quadrant 2 from NW quadrant 3 from SW quadrant 4 from SE quadrant
hintoptional - evaluation hint (int[2]) used to speed repeated evaluations

◆ EvNormal() [3/3]

bool ON_Surface::EvNormal ( double  u,
double  v,
ON_3dVector normal,
int  quadrant = 0,
int *  hint = 0 
) const
Parameters
ureturns false if unable to evaluate
vevaluation parameters (s,t)
normalunit normal
quadrantoptional - determines which side to evaluate from 0 = default 1 from NE quadrant 2 from NW quadrant 3 from SW quadrant 4 from SE quadrant
hintoptional - evaluation hint (int[2]) used to speed repeated evaluations

◆ EvPoint()

bool ON_Surface::EvPoint ( double  u,
double  v,
ON_3dPoint point,
int  quadrant = 0,
int *  hint = 0 
) const
Parameters
ureturns false if unable to evaluate
vevaluation parameters
pointreturns value of surface
quadrantoptional - determines which side to evaluate from 0 = default 1 from NE quadrant 2 from NW quadrant 3 from SW quadrant 4 from SE quadrant
hintoptional - evaluation hint (int[2]) used to speed repeated evaluations

◆ Extend()

virtual bool ON_Surface::Extend ( int  dir,
const ON_Interval domain 
)
virtual

Description: Pure virtual function. Default returns false. Where possible, analytically extends surface to include domain. Parameters: dir - [in] 0 new Domain(0) will include domain. (the first surface parameter). 1 new Domain(1) will include domain. (the second surface parameter). domain - [in] if domain is not included in surface domain, surface will be extended so that its domain includes domain.
Will not work if surface is closed in direction dir. Original surface is identical to the restriction of the resulting surface to the original surface domain, Returns: true if successful.

Reimplemented in ON_NurbsSurface, ON_SumSurface, ON_RevSurface, ON_PlaneSurface, and ON_Extrusion.

◆ FrameAt()

bool ON_Surface::FrameAt ( double  u,
double  v,
ON_Plane frame 
) const

◆ GetClosestPoint()

virtual bool ON_Surface::GetClosestPoint ( const ON_3dPoint P,
double *  s,
double *  t,
double  maximum_distance = 0.0,
const ON_Interval sdomain = 0,
const ON_Interval tdomain = 0 
) const
virtual

Description: Get the parameters of the point on the surface that is closest to P. Parameters: P - [in] test point s - [out] t - [out] (*s,*t) = parameters of the surface point that is closest to P. maximum_distance = 0.0 - [in] optional upper bound on the distance from P to the surface. If you are only interested in finding a point Q on the surface when P.DistanceTo(Q) < maximum_distance, then set maximum_distance to that value. sdomain = 0 - [in] optional domain restriction tdomain = 0 - [in] optional domain restriction Returns: True if successful. If false, the values of *s and *t are undefined. See Also: ON_Surface::GetLocalClosestPoint.

Reimplemented in ON_RevSurface, ON_PlaneSurface, ON_SurfaceProxy, and ON_Extrusion.

◆ GetDomain()

bool ON_Surface::GetDomain ( int  dir,
double *  t0,
double *  t1 
) const
Parameters
dir0 gets first parameter, 1 gets second parameter

◆ GetIsoPushupDirection()

int ON_Surface::GetIsoPushupDirection ( const ON_Curve curve_2d,
double  tolerance,
const ON_Interval curve_2d_subdomain,
double *  c,
ON_Interval c3_dom 
) const

Description: Helper for ON_Surface::Pushup() to determine if an iso-curve can be used. Parameters: curve_2d - [in] tolerance - [in] curve_2d_subdomain - [in] Pass null if entire curve_2d is being used. c - [out] Pass null if you don't need this value returned. c3_dom - [out] Pass null if you don't want this returned. c3_dom will be decreasing if curve_2d is going opposite the surface's parameterization. If -1 is returned, then the input value of c2_dom is not changed. Returns: 0 or 1: The 3d curve returned by IsoCurve( dir, c ) will be a pushup tolerance. The starting parameter of the 3d curve is c3_dom[0] and the ending parameter of the 3d curve is at c3_dom[1].
Note that c3_dom will be decreasing when curve_2d is oriented opposite to the direction of the surface's paramterization. -1: if a pushup cannot be used.

◆ GetLocalClosestPoint()

virtual bool ON_Surface::GetLocalClosestPoint ( const ON_3dPoint ,
double  ,
double  ,
double *  ,
double *  ,
const ON_Interval = nullptr,
const ON_Interval = nullptr 
) const
virtual

Find parameters of the point on a surface that is locally closest to the test_point. The search for a local close point starts at seed parameters. If a sub_domain parameter is not nullptr, then the search is restricted to the specified portion of the surface.

true if returned if the search is successful. false is returned if the search fails.

Reimplemented in ON_RevSurface, ON_PlaneSurface, ON_SurfaceProxy, and ON_Extrusion.

◆ GetNextDiscontinuity()

virtual bool ON_Surface::GetNextDiscontinuity ( int  dir,
ON::continuity  c,
double  t0,
double  t1,
double *  t,
int *  hint = nullptr,
int *  dtype = nullptr,
double  cos_angle_tolerance = ON_DEFAULT_ANGLE_TOLERANCE_COSINE,
double  curvature_tolerance = ON_SQRT_EPSILON 
) const
virtual

Description: Search for a derivatitive, tangent, or curvature discontinuity. Parameters: dir - [in] If 0, then "u" parameter is checked. If 1, then the "v" parameter is checked. c - [in] type of continity to test for. t0 - [in] Search begins at t0. If there is a discontinuity at t0, it will be ignored. This makes it possible to repeatedly call GetNextDiscontinuity and step through the discontinuities. t1 - [in] (t0 != t1) If there is a discontinuity at t1 is will be ignored unless c is a locus discontinuity type and t1 is at the start or end of the curve. t - [out] if a discontinuity is found, then *t reports the parameter at the discontinuity. hint - [in/out] if GetNextDiscontinuity will be called repeatedly, passing a "hint" with initial value *hint=0 will increase the speed of the search.
dtype - [out] if not nullptr, *dtype reports the kind of discontinuity found at *t. A value of 1 means the first derivative or unit tangent was discontinuous. A value of 2 means the second derivative or curvature was discontinuous. A value of 0 means the curve is not closed, a locus discontinuity test was applied, and t1 is at the start of end of the curve. cos_angle_tolerance - [in] default = cos(1 degree) Used only when c is ON::continuity::G1_continuous or ON::continuity::G2_continuous. If the cosine of the angle between two tangent vectors is <= cos_angle_tolerance, then a G1 discontinuity is reported. curvature_tolerance - [in] (default = ON_SQRT_EPSILON) Used only when c is ON::continuity::G2_continuous. If K0 and K1 are curvatures evaluated from above and below and |K0 - K1| > curvature_tolerance, then a curvature discontinuity is reported. Returns: Parametric continuity tests c = (C0_continuous, ..., G2_continuous):

true if a parametric discontinuity was found strictly between t0 and t1. Note well that all curves are parametrically continuous at the ends of their domains.

Locus continuity tests c = (C0_locus_continuous, ...,G2_locus_continuous):

true if a locus discontinuity was found strictly between t0 and t1 or at t1 is the at the end of a curve. Note well that all open curves (IsClosed()=false) are locus discontinuous at the ends of their domains. All closed curves (IsClosed()=true) are at least C0_locus_continuous at the ends of their domains.

Reimplemented in ON_NurbsSurface, ON_RevSurface, ON_SumSurface, ON_Extrusion, ON_PlaneSurface, and ON_SurfaceProxy.

◆ GetNurbForm()

virtual int ON_Surface::GetNurbForm ( ON_NurbsSurface nurbs_surface,
double  tolerance = 0.0 
) const
virtual

Description: Get a NURBS surface representation of this surface. Parameters: nurbs_surface - [out] NURBS representation returned here tolerance - [in] tolerance to use when creating NURBS representation. s_subdomain - [in] if not nullptr, then the NURBS representation for this portion of the surface is returned. t_subdomain - [in] if not nullptr, then the NURBS representation for this portion of the surface is returned. Returns: 0 unable to create NURBS representation with desired accuracy. 1 success - returned NURBS parameterization matches the surface's to wthe desired accuracy 2 success - returned NURBS point locus matches the surface's to the desired accuracy and the domain of the NURBS surface is correct. On However, This surface's parameterization and the NURBS surface parameterization may not match to the desired accuracy. This situation happens when getting NURBS representations of surfaces that have a transendental parameterization like spheres, cylinders, and cones. Remarks: This is a low-level virtual function. If you do not need the parameterization information provided by the return code, then ON_Surface::NurbsSurface may be easier to use. See Also: ON_Surface::NurbsSurface

Reimplemented in ON_Extrusion, ON_NurbsSurface, ON_PlaneSurface, ON_RevSurface, ON_SurfaceProxy, and ON_SumSurface.

◆ GetNurbFormParameterFromSurfaceParameter()

virtual bool ON_Surface::GetNurbFormParameterFromSurfaceParameter ( double  surface_s,
double  surface_t,
double *  nurbs_s,
double *  nurbs_t 
) const
virtual

◆ GetParameterTolerance()

virtual bool ON_Surface::GetParameterTolerance ( int  dir,
double  t,
double *  tminus,
double *  tplus 
) const
virtual
Parameters
dirreturns tminus < tplus: parameters tminus <= s <= tplus 0 gets first parameter, 1 gets second parameter
tt = parameter in domain
tminustminus
tplustplus

Reimplemented in ON_NurbsSurface, ON_SumSurface, ON_RevSurface, ON_PlaneSurface, ON_SurfaceProxy, and ON_Extrusion.

◆ GetSilhouette()

bool ON_Surface::GetSilhouette ( const ON_Interval udom,
const ON_Interval vdom,
const ON_SilhouetteParameters  parameters,
const ON_PlaneEquation clipping_planes,
size_t  clipping_plane_count,
ON_ClassArray< ON_SIL_EVENT > &  silhouettes,
ON_ProgressReporter progress,
ON_Terminator terminator 
) const

◆ GetSpanVector()

virtual bool ON_Surface::GetSpanVector ( int  dir,
double *  span_vector 
) const
pure virtual
Parameters
dirspan "knots" 0 gets first parameter's domain, 1 gets second parameter's domain
span_vectorarray of length SpanCount() + 1

Implemented in ON_NurbsSurface, ON_SumSurface, ON_RevSurface, ON_PlaneSurface, ON_SurfaceProxy, and ON_Extrusion.

◆ GetSpanVectorIndex()

virtual bool ON_Surface::GetSpanVectorIndex ( int  dir,
double  t,
int  side,
int *  span_vector_index,
ON_Interval span_interval 
) const
virtual

If t is in the domain of the surface, GetSpanVectorIndex() returns the span vector index "i" such that span_vector[i] <= t <= span_vector[i+1]. The "side" parameter determines which span is selected when t is at the end of a span.

Parameters
dir0 gets first parameter's domain, 1 gets second parameter's domain
[in]t[IN] t = evaluation parameter
[in]side[IN] side 0 = default, -1 = from below, +1 = from above
[out]span_vector_index[OUT] span vector index
[out]span_interval[OUT] domain of the span containing "t"

Reimplemented in ON_Extrusion.

◆ GetSurfaceParameterFromNurbFormParameter() [1/2]

ON_Curve* ON_Surface::GetSurfaceParameterFromNurbFormParameter ( const ON_Curve curve3d,
const ON_Curve ns_curve2dX,
double  fit_tolerance 
) const

Description: Transform a parameter space curve from the surface tree (Nurbs) parameter space to the surface's innate parameter space. Requires a curve on the surface, and a parameter space curve defined in terms of the surface tree's parameter space, we transform this into the surfaces innate parameter space. Parameters: Srf - [in] Surface curve3d - [in] 3d intersection curve ns_curve2dX -[in] Curve in surface tree parameter space

fit_tolerance - [in] tolerance

Returns: A curve in the the surface's parameter space or nullptr if unsecessfull.

Parameters
curve3d3d intersection curve
ns_curve2dX2d curve in surface tree (i.e. nurbs_surface)
fit_toleranceparameter space distance_tolerance for fitting

◆ GetSurfaceParameterFromNurbFormParameter() [2/2]

virtual bool ON_Surface::GetSurfaceParameterFromNurbFormParameter ( double  nurbs_s,
double  nurbs_t,
double *  surface_s,
double *  surface_t 
) const
virtual

◆ GetSurfaceSize()

virtual bool ON_Surface::GetSurfaceSize ( double *  width,
double *  height 
) const
virtual

Description: Get an estimate of the size of the rectangle that would be created if the 3d surface where flattened into a rectangle. Parameters: width - [out] (corresponds to the first surface parameter) height - [out] (corresponds to the first surface parameter) Example:

/ Reparameterize a surface to minimize distortion / in the map from parameter space to 3d. ON_Surface* surf = ...; double width, height; if ( surf->GetSurfaceSize( &width, &height ) ) { srf->SetDomain( 0, ON_Interval( 0.0, width ) ); srf->SetDomain( 1, ON_Interval( 0.0, height ) ); }

Returns: true if successful.

Reimplemented in ON_NurbsSurface, ON_Extrusion, ON_SumSurface, ON_RevSurface, ON_PlaneSurface, and ON_SurfaceProxy.

◆ HasBrepForm()

bool ON_Surface::HasBrepForm ( ) const
overridevirtual

virtual ON_Geometry functions Description: Overrides virtual ON_Geometry::HasBrepForm and returns true. Result: Returns true. See Also: ON_Brep::Create( ON_Surface&* )

Reimplemented from ON_Geometry.

◆ HasNurbForm()

virtual int ON_Surface::HasNurbForm ( ) const
virtual

Description: Is there a NURBS surface representation of this surface. Parameters: Returns: 0 unable to create NURBS representation with desired accuracy. 1 success - NURBS parameterization matches the surface's 2 success - NURBS point locus matches the surface's and the domain of the NURBS surface is correct.
However, This surface's parameterization and the NURBS surface parameterization may not match. This situation happens when getting NURBS representations of surfaces that have a transendental parameterization like spheres, cylinders, and cones. Remarks: This is a low-level virtual function. See Also: ON_Surface::GetNurbForm ON_Surface::NurbsSurface

Reimplemented in ON_NurbsSurface, ON_PlaneSurface, ON_RevSurface, ON_SurfaceProxy, ON_SumSurface, and ON_Extrusion.

◆ IntersectPlane()

int ON_Surface::IntersectPlane ( ON_PlaneEquation  plane_equation,
ON_ClassArray< ON_SSX_EVENT > &  x,
double  intersection_tolerance = 0.0,
double  overlap_tolerance = 0.0,
double  fitting_tolerance = 0.0,
const ON_Interval surface_udomain = 0,
const ON_Interval surface_vdomain = 0 
) const

Description: Intersect this surface with an infinite plane.

Parameters: plane_equation - [in]

x - [out] Intersection events are appended to this array.

intersection_tolerance - [in] If the input intersection_tolerance <= 0.0, then 0.001 is used.

overlap_tolerance - [in] If positive, then overlap_tolerance must be >= intersection_tolerance and is used to test for overlapping regions. If the input overlap_tolerance <= 0.0, then 2*intersection_tolerance is used.

fitting_tolerance - [in] If fitting_tolerance is > 0 and >= intersection_tolerance, then the intersection curves are fit to this tolerance. If input fitting_tolerance <= 0.0 or < intersection_tolerance, then intersection_tolerance is used.

surface_udomain - [in] optional restriction on surfaceA u domain surface_vdomain - [in] optional restriction on surfaceA v domain

Returns: Number of intersection events appended to x.

◆ IntersectSurface()

int ON_Surface::IntersectSurface ( const ON_Surface surfaceB,
ON_ClassArray< ON_SSX_EVENT > &  x,
double  intersection_tolerance = 0.0,
double  overlap_tolerance = 0.0,
double  fitting_tolerance = 0.0,
const ON_Interval surfaceA_udomain = 0,
const ON_Interval surfaceA_vdomain = 0,
const ON_Interval surfaceB_udomain = 0,
const ON_Interval surfaceB_vdomain = 0 
) const

Description: Intersect this surface with surfaceB.

Parameters: surfaceB - [in]

x - [out] Intersection events are appended to this array.

intersection_tolerance - [in] If the input intersection_tolerance <= 0.0, then 0.001 is used.

overlap_tolerance - [in] If positive, then overlap_tolerance must be >= intersection_tolerance and is used to test for overlapping regions. If the input overlap_tolerance <= 0.0, then 2*intersection_tolerance is used.

fitting_tolerance - [in] If fitting_tolerance is > 0 and >= intersection_tolerance, then the intersection curves are fit to this tolerance. If input fitting_tolerance <= 0.0 or < intersection_tolerance, then intersection_tolerance is used.

surfaceA_udomain - [in] optional restriction on surfaceA u domain surfaceA_vdomain - [in] optional restriction on surfaceA v domain

surfaceB_udomain - [in] optional restriction on surfaceB u domain surfaceB_vdomain - [in] optional restriction on surfaceB v domain Returns: Number of intersection events appended to x.

◆ IsAtSeam()

int ON_Surface::IsAtSeam ( double  s,
double  t 
) const

Description: Test if a surface parameter value is at a seam. Parameters: s - [in] surface parameter to test t - [in] surface parameter to test Returns: 0 if not a seam, 1 if s == Domain(0)[i] and srf(s, t) == srf(Domain(0)[1-i], t) 2 if t == Domain(1)[i] and srf(s, t) == srf(s, Domain(1)[1-i]) 3 if 1 and 2 are true.

◆ IsAtSingularity()

bool ON_Surface::IsAtSingularity ( double  s,
double  t,
bool  bExact = true 
) const

Description: Test if a surface parameter value is at a singularity. Parameters: s - [in] surface parameter to test t - [in] surface parameter to test bExact - [in] if true, test if s,t is exactly at a singularity if false, test if close enough to cause numerical problems. Returns: true if surface is singular at (s,t)

◆ IsClosed()

virtual bool ON_Surface::IsClosed ( int  ) const
virtual

◆ IsCone()

bool ON_Surface::IsCone ( ON_Cone cone = nullptr,
double  tolerance = ON_ZERO_TOLERANCE 
) const

Description: Determine if the surface is a portion of a cone. Parameters: cone - [out] if not nullptr and true is returned, then the cone definition is returned. tolerance - [in] tolerance to use when checking Returns: True if the surface is a portion of a cone.

◆ IsContinuous()

virtual bool ON_Surface::IsContinuous ( ON::continuity  c,
double  s,
double  t,
int *  hint = nullptr,
double  point_tolerance = ON_ZERO_TOLERANCE,
double  d1_tolerance = ON_ZERO_TOLERANCE,
double  d2_tolerance = ON_ZERO_TOLERANCE,
double  cos_angle_tolerance = ON_DEFAULT_ANGLE_TOLERANCE_COSINE,
double  curvature_tolerance = ON_SQRT_EPSILON 
) const
virtual

Description: Test continuity at a surface parameter value. Parameters: c - [in] continuity to test for s - [in] surface parameter to test t - [in] surface parameter to test hint - [in] evaluation hint point_tolerance - [in] if the distance between two points is greater than point_tolerance, then the surface is not C0. d1_tolerance - [in] if the difference between two first derivatives is greater than d1_tolerance, then the surface is not C1. d2_tolerance - [in] if the difference between two second derivatives is greater than d2_tolerance, then the surface is not C2. cos_angle_tolerance - [in] default = cos(1 degree) Used only when c is ON::continuity::G1_continuous or ON::continuity::G2_continuous. If the cosine of the angle between two normal vectors is <= cos_angle_tolerance, then a G1 discontinuity is reported. curvature_tolerance - [in] (default = ON_SQRT_EPSILON) Used only when c is ON::continuity::G2_continuous. If K0 and K1 are curvatures evaluated from above and below and |K0 - K1| > curvature_tolerance, then a curvature discontinuity is reported. Returns: true if the surface has at least the c type continuity at the parameter t.

Reimplemented in ON_NurbsSurface, ON_RevSurface, ON_SumSurface, ON_PlaneSurface, ON_SurfaceProxy, and ON_Extrusion.

◆ IsCylinder()

bool ON_Surface::IsCylinder ( ON_Cylinder cylinder = nullptr,
double  tolerance = ON_ZERO_TOLERANCE 
) const

Description: Determine if the surface is a portion of a cylinder. Parameters: cylinder - [out] if not nullptr and true is returned, then the cylinder definition is returned. tolerance - [in] tolerance to use when checking Returns: True if the surface is a portion of a cylinder.

◆ IsIsoparametric() [1/2]

virtual ISO ON_Surface::IsIsoparametric ( const ON_BoundingBox bbox) const
virtual

Description: Test a 2d bounding box to see if it is iso parameteric in the surface's parameter space. Parameters: bbox - [in] bounding box to test Returns: Isoparametric status of the bounding box. Remarks: Because it may transpose domains, ON_SurfaceProxy overrides this function. All other surface classes just use the base class implementation.

Reimplemented in ON_Extrusion, and ON_SurfaceProxy.

◆ IsIsoparametric() [2/2]

virtual ISO ON_Surface::IsIsoparametric ( const ON_Curve curve,
const ON_Interval curve_domain = nullptr 
) const
virtual

Description: Test a 2d curve to see if it is iso parameteric in the surface's parameter space. Parameters: curve - [in] curve to test curve_domain = [in] optional sub domain of the curve Returns: Isoparametric status of the curve. Remarks: Because it may transpose domains, ON_SurfaceProxy overrides this function. All other surface classes just use the base class implementation.

Reimplemented in ON_Extrusion, and ON_SurfaceProxy.

◆ IsoCurve()

virtual ON_Curve* ON_Surface::IsoCurve ( int  dir,
double  c 
) const
virtual

Description: Get isoparametric curve. Parameters: dir - [in] 0 first parameter varies and second parameter is constant e.g., point on IsoCurve(0,c) at t is srf(t,c) This is a horizontal line from left to right 1 first parameter is constant and second parameter varies e.g., point on IsoCurve(1,c) at t is srf(c,t This is a vertical line from bottom to top

c - [in] value of constant parameter Returns: Isoparametric curve. Remarks: In this function "dir" indicates which direction the resulting curve runs. 0: horizontal, 1: vertical In the other ON_Surface functions that take a "dir" argument, "dir" indicates if "c" is a "u" or "v" parameter.

Reimplemented in ON_SumSurface, ON_NurbsSurface, ON_RevSurface, ON_PlaneSurface, ON_SurfaceProxy, and ON_Extrusion.

◆ IsPeriodic()

virtual bool ON_Surface::IsPeriodic ( int  ) const
virtual

◆ IsPlanar()

virtual bool ON_Surface::IsPlanar ( ON_Plane plane = nullptr,
double  tolerance = ON_ZERO_TOLERANCE 
) const
virtual

Description: Test a surface to see if it is planar. Parameters: plane - [out] if not nullptr and true is returned, the plane parameters are filled in. tolerance - [in] tolerance to use when checking Returns: true if there is a plane such that the maximum distance from the surface to the plane is <= tolerance.

Reimplemented in ON_NurbsSurface, ON_RevSurface, ON_Extrusion, ON_SumSurface, ON_PlaneSurface, and ON_SurfaceProxy.

◆ IsSingular()

virtual bool ON_Surface::IsSingular ( int  ) const
virtual

◆ IsSolid()

bool ON_Surface::IsSolid ( ) const

Returns: True if the surface defines a solid, like a sphere or torus. False if the surface does not define a solid, like a plane or cone.

◆ IsSphere()

bool ON_Surface::IsSphere ( ON_Sphere sphere = nullptr,
double  tolerance = ON_ZERO_TOLERANCE 
) const

Description: Determine if the surface is a portion of a sphere. Parameters: sphere - [out] if not nullptr and true is returned, then the sphere definition is returned. tolerance - [in] tolerance to use when checking Returns: True if the surface is a portion of a sphere.

◆ IsTorus()

bool ON_Surface::IsTorus ( ON_Torus torus = nullptr,
double  tolerance = ON_ZERO_TOLERANCE 
) const

Description: Determine if the surface is a portion of a torus. Parameters: torus - [out] if not nullptr and true is returned, then the torus definition is returned. tolerance - [in] tolerance to use when checking Returns: True if the surface is a portion of a torus.

◆ NormalAt()

ON_3dVector ON_Surface::NormalAt ( double  ,
double   
) const

◆ NurbsSurface()

ON_NurbsSurface* ON_Surface::NurbsSurface ( ON_NurbsSurface pNurbsSurface = nullptr,
double  tolerance = 0.0,
const ON_Interval s_subdomain = nullptr,
const ON_Interval t_subdomain = nullptr 
) const

Description: Get a NURBS surface representation of this surface. Parameters: pNurbsSurface - [in/out] if not nullptr, this pNurbsSurface will be used to store the NURBS representation of the surface and will be returned. tolerance - [in] tolerance to use when creating NURBS surface representation. s_subdomain - [in] if not nullptr, then the NURBS representation for this portion of the surface is returned. t_subdomain - [in] if not nullptr, then the NURBS representation for this portion of the surface is returned. Returns: nullptr or a NURBS representation of the surface. Remarks: See ON_Surface::GetNurbForm for important details about the NURBS surface parameterization. See Also: ON_Surface::GetNurbForm

◆ ObjectType()

ON::object_type ON_Surface::ObjectType ( ) const
overridevirtual

override ON_Object::ObjectType() - returns ON::surface_object

Reimplemented from ON_Object.

◆ Offset()

virtual ON_Surface* ON_Surface::Offset ( double  offset_distance,
double  tolerance,
double *  max_deviation = nullptr 
) const
virtual

Description: Offset surface. Parameters: offset_distance - [in] offset distance tolerance - [in] Some surfaces do not have an exact offset that can be represented using the same class of surface definition. In that case, the tolerance specifies the desired accuracy. max_deviation - [out] If this parameter is not nullptr, the maximum deviation from the returned offset to the true offset is returned here. This deviation is zero except for cases where an exact offset cannot be computed using the same class of surface definition. Returns: Offset surface.

Reimplemented in ON_PlaneSurface, ON_SurfaceProxy, and ON_NurbsSurface.

◆ operator=()

ON_Surface& ON_Surface::operator= ( const ON_Surface )

◆ PointAt()

ON_3dPoint ON_Surface::PointAt ( double  ,
double   
) const

simple evaluation interface - no error handling

◆ Pullback()

virtual ON_Curve* ON_Surface::Pullback ( const ON_Curve curve_3d,
double  tolerance,
const ON_Interval curve_3d_subdomain = nullptr,
ON_3dPoint  start_uv = ON_3dPoint::UnsetPoint,
ON_3dPoint  end_uv = ON_3dPoint::UnsetPoint,
ON_FitResult rc = 0 
) const
virtual

Description: Pull a 3d curve back to the surface's parameter space. Parameters: curve_3d - [in] a 3d curve tolerance - [in] the maximum acceptable 3d distance between from surface(curve_2d(t)) to the locus of points on the surface that are closest to curve_3d. curve_3d_subdomain - [in] optional subdomain for curve_3d start_uv - [in] optional starting point (if known) end_uv - [in] optional ending point (if known) rc - [out] if not 0 on input, points to an ON_FitResult with the following value - ON_FitResult::in_tolerance if result is in tolerance ON_FitResult::not_in_tolerance if result is not in tolerance ON_FitResult::unknown if no result or it could not be determined if the result was in tolerance. Returns: 2d curve. See Also: ON_Surface::IsoCurve ON_Surface::Pushup

Reimplemented in ON_Extrusion, ON_PlaneSurface, and ON_SurfaceProxy.

◆ PullbackCurveProxy()

ON_Curve* ON_Surface::PullbackCurveProxy ( const ON_CurveProxy curveproxy_3d,
double  tolerance,
const ON_Interval curve_3d_subdomain,
ON_3dPoint  start_uv,
ON_3dPoint  end_uv,
ON_FitResult rc 
) const
protected

Helper for ON_Surface::Pullback overrides that handles "real" curve issues.

◆ PullbackPolyCurve()

ON_Curve* ON_Surface::PullbackPolyCurve ( const ON_PolyCurve polycurve_3d,
double  tolerance,
const ON_Interval curve_3d_subdomain,
ON_3dPoint  start_uv,
ON_3dPoint  end_uv,
ON_FitResult rc 
) const
protected

◆ Pushup()

virtual ON_Curve* ON_Surface::Pushup ( const ON_Curve curve_2d,
double  tolerance,
const ON_Interval curve_2d_subdomain = nullptr,
ON_FitResult rc = 0 
) const
virtual

Description: Compute a 3d curve that is the composite of a 2d curve and the surface map. Parameters: curve_2d - [in] a 2d curve whose image is in the surface's domain. tolerance - [in] the maximum acceptable distance from the returned 3d curve to the image of curve_2d on the surface. curve_2d_subdomain - [in] optional subdomain for curve_2d rc - [out] if not 0 on input, points to an ON_FitResult with the following value - ON_FitResult::in_tolerance if result is in tolerance ON_FitResult::not_in_tolerance if result is not in tolerance ON_FitResult::unknown if no result or it could not be determined if the result was in tolerance. Returns: 3d curve. See Also: ON_Surface::IsoCurve ON_Surface::Pullback

Reimplemented in ON_Extrusion, ON_PlaneSurface, and ON_SurfaceProxy.

◆ PushupCurveProxy()

ON_Curve* ON_Surface::PushupCurveProxy ( const ON_CurveProxy curveproxy_2d,
double  tolerance,
const ON_Interval curve_2d_subdomain,
ON_FitResult rc 
) const
protected

Helper for ON_Surface::Pushup overrides that handles "real" curve issues.

◆ PushupPolyCurve()

ON_Curve* ON_Surface::PushupPolyCurve ( const ON_PolyCurve polycurve_2d,
double  tolerance,
const ON_Interval curve_2d_subdomain,
ON_FitResult rc 
) const
protected

Helper for ON_Surface::Pushup overrides that does a segment-by-segment pushup.

◆ Reverse()

virtual bool ON_Surface::Reverse ( int  )
pure virtual

◆ SetDomain() [1/2]

virtual bool ON_Surface::SetDomain ( int  dir,
double  t0,
double  t1 
)
virtual
Parameters
dir0 sets first parameter's domain, 1 gets second parameter's domain

Reimplemented in ON_BrepFace, ON_NurbsSurface, ON_Extrusion, ON_SumSurface, ON_RevSurface, and ON_PlaneSurface.

◆ SetDomain() [2/2]

bool ON_Surface::SetDomain ( int  dir,
ON_Interval  domain 
)
Parameters
dir0 sets first parameter's domain, 1 gets second parameter's domain

◆ SizeOf()

unsigned int ON_Surface::SizeOf ( ) const
overridevirtual

virtual ON_Object::SizeOf override

Reimplemented from ON_Object.

Reimplemented in ON_SurfaceProxy.

◆ SpanCount()

virtual int ON_Surface::SpanCount ( int  dir) const
pure virtual

number of smooth nonempty spans in the parameter direction

Parameters
dir0 gets first parameter's domain, 1 gets second parameter's domain

Implemented in ON_NurbsSurface, ON_SumSurface, ON_RevSurface, ON_PlaneSurface, ON_SurfaceProxy, and ON_Extrusion.

◆ Split()

virtual bool ON_Surface::Split ( int  dir,
double  c,
ON_Surface *&  west_or_south_side,
ON_Surface *&  east_or_north_side 
) const
virtual

Description: Splits (divides) the surface into two parts at the specified parameter.

Parameters: dir - [in] 0 The surface is split vertically. The "west" side is returned in "west_or_south_side" and the "east" side is returned in "east_or_north_side". 1 The surface is split horizontally. The "south" side is returned in "west_or_south_side" and the "north" side is returned in "east_or_north_side". c - [in] value of constant parameter in interval returned by Domain(dir) west_or_south_side - [out] west/south portion of surface returned here east_or_north_side - [out] east/north portion of surface returned here

Example:

    ON_NurbsSurface srf = ...;
    int dir = 1;
    ON_NurbsSurface* south_side = 0;
    ON_NurbsSurface* north_side = 0;
    srf.Split( dir, srf.Domain(dir).Mid() south_side, north_side );

Reimplemented in ON_NurbsSurface, ON_SumSurface, ON_RevSurface, ON_PlaneSurface, and ON_Extrusion.

◆ SurfaceTree()

const ON_SurfaceTree* ON_Surface::SurfaceTree ( ) const

◆ Transpose()

virtual bool ON_Surface::Transpose ( )
pure virtual

transpose surface parameterization (swap "s" and "t")

Implemented in ON_BrepFace, ON_NurbsSurface, ON_RevSurface, ON_SumSurface, ON_PlaneSurface, ON_SurfaceProxy, and ON_Extrusion.

◆ Trim()

virtual bool ON_Surface::Trim ( int  dir,
const ON_Interval domain 
)
virtual

Description: Removes the portions of the surface outside of the specified interval.

Parameters: dir - [in] 0 The domain specifies an sub-interval of Domain(0) (the first surface parameter). 1 The domain specifies an sub-interval of Domain(1) (the second surface parameter). domain - [in] interval of the surface to keep. If dir is 0, then the portions of the surface with parameters (s,t) satisfying s < Domain(0).Min() or s > Domain(0).Max() are trimmed away. If dir is 1, then the portions of the surface with parameters (s,t) satisfying t < Domain(1).Min() or t > Domain(1).Max() are trimmed away.

Reimplemented in ON_NurbsSurface, ON_SumSurface, ON_RevSurface, ON_PlaneSurface, and ON_Extrusion.

◆ VolumeMassProperties()

bool ON_Surface::VolumeMassProperties ( class ON_MassProperties mp,
bool  bVolume = true,
bool  bFirstMoments = true,
bool  bSecondMoments = true,
bool  bProductMoments = true,
ON_3dPoint  base_point = ON_3dPoint::UnsetPoint,
double  rel_tol = 1.0e-6,
double  abs_tol = 1.0e-6 
) const

Description: Calculate volume mass properties of the surface. Parameters: mp - [out] bVolume - [in] true to calculate volume bFirstMoments - [in] true to calculate volume first moments, volume, and volume centroid. bSecondMoments - [in] true to calculate volume second moments. bProductMoments - [in] true to calculate volume product moments. base_point - [in] If the surface is closed, then pass ON_UNSET_VALUE.

This parameter is for expert users who are computing a volume whose boundary is defined by several non-closed breps, surfaces, and meshes.

When computing the volume, volume centroid, or volume first moments of a volume whose boundary is defined by several breps, surfaces, and meshes, pass the same base_point to each call to VolumeMassProperties.

When computing the volume second moments or volume product moments of a volume whose boundary is defined by several breps, surfaces, and meshes, you MUST pass the entire volume's centroid as the base_point and the input mp parameter must contain the results of a previous call to VolumeMassProperties(mp,true,true,false,false,base_point). In particular, in this case, you need to make two sets of calls; use first set to calculate the volume centroid and the second set calculate the second moments and product moments. Returns: True if successful.

Friends And Related Function Documentation

◆ TL_Surface_PullbackHelper

ON_Curve* TL_Surface_PullbackHelper ( const ON_Surface ,
const ON_Curve ,
double  ,
const ON_Interval ,
ON_3dPoint  ,
ON_3dPoint  ,
ON_FitResult  
)
friend

◆ TL_Surface_PushupHelper

ON_Curve* TL_Surface_PushupHelper ( const ON_Surface ,
const ON_Curve ,
double  ,
const ON_Interval ,
ON_FitResult  
)
friend

Helper for ON_Surface::Pullback overrides that does a segment-by-segment pullback.