Rhino C++ API
8.13
|
#include <opennurbs_quaternion.h>
Public Member Functions | |
ON_Quaternion () | |
ON_Quaternion (const ON_3dVector &v) | |
(a,b,c,d) = (0,v.x,v.y,v.z) More... | |
ON_Quaternion (double qa, double qb, double qc, double qd) | |
ON_Quaternion | Conjugate () const |
double | DistanceTo (const ON_Quaternion &q) const |
bool | GetEulerZYZ (double &alpha, double &beta, double &gamma) const |
bool | GetRotation (double &angle, ON_3dVector &axis) const |
bool | GetRotation (ON_Plane &plane) const |
bool | GetRotation (ON_Xform &xform) const |
bool | GetYawPitchRoll (double &yaw, double &pitch, double &roll) const |
ON_Quaternion | Inverse () const |
bool | Invert () |
bool | IsNotZero () const |
bool | IsScalar () const |
bool | IsValid () const |
bool | IsVector () const |
bool | IsZero () const |
double | Length () const |
double | LengthSquared () const |
ON_Xform | MatrixForm () const |
ON_Quaternion | operator* (const ON_Quaternion &) const |
quaternion multiplication is not commutative More... | |
ON_Quaternion | operator* (double) const |
ON_Quaternion | operator* (float) const |
ON_Quaternion | operator* (int) const |
arithmetic operators More... | |
ON_Quaternion | operator+ (const ON_Quaternion &) const |
ON_Quaternion | operator- (const ON_Quaternion &) const |
ON_Quaternion | operator/ (double) const |
ON_Quaternion | operator/ (float) const |
ON_Quaternion | operator/ (int) const |
ON_Quaternion & | operator= (const ON_3dVector &v) |
(a,b,c,d) = (0,v.x,v.y,v.z) More... | |
ON_3dVector | Rotate (ON_3dVector v) const |
double | Scalar () const |
void | Set (double qa, double qb, double qc, double qd) |
void | SetRotation (const ON_Plane &plane0, const ON_Plane &plane1) |
void | SetRotation (double angle, const ON_3dVector &axis) |
bool | Unitize () |
ON_3dVector | Vector () const |
Static Public Member Functions | |
static double | Distance (const ON_Quaternion &p, const ON_Quaternion &q) |
static ON_Quaternion | Exp (ON_Quaternion q) |
static ON_Quaternion | Log (ON_Quaternion q) |
static ON_Quaternion | Pow (ON_Quaternion q, double t) |
static ON_Quaternion | RotateTowards (ON_Quaternion q0, ON_Quaternion q1, double MaxRadians) |
static ON_Quaternion | Rotation (const ON_Plane &plane0, const ON_Plane &plane1) |
static ON_Quaternion | Rotation (double angle, const ON_3dVector &axis) |
static ON_Quaternion | RotationZYX (double yaw, double pitch, double roll) |
static ON_Quaternion | RotationZYZ (double alpha, double beta, double gamma) |
static ON_Quaternion | Slerp (ON_Quaternion q0, ON_Quaternion q1, double t) |
Public Attributes | |
double | a |
quaternion = a + bi + cj + dk More... | |
double | b |
double | c |
double | d |
Static Public Attributes | |
static const ON_Quaternion | I |
"i" = (0,1,0,0) More... | |
static const ON_Quaternion | Identity |
1 = (1,0,0,0) More... | |
static const ON_Quaternion | J |
"j" = (0,0,1,0) More... | |
static const ON_Quaternion | K |
"k" = (0,0,0,1) More... | |
static const ON_Quaternion | Zero |
0 = (0,0,0,0 More... | |
Copyright (c) 1993-2022 Robert McNeel & Associates. All rights reserved. OpenNURBS, Rhinoceros, and Rhino3D are registered trademarks of Robert McNeel & Associates.
THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY. ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE AND OF MERCHANTABILITY ARE HEREBY DISCLAIMED.
For complete openNURBS copyright information see http://www.opennurbs.org.
|
inline |
ON_Quaternion::ON_Quaternion | ( | double | qa, |
double | qb, | ||
double | qc, | ||
double | qd | ||
) |
ON_Quaternion::ON_Quaternion | ( | const ON_3dVector & | v | ) |
(a,b,c,d) = (0,v.x,v.y,v.z)
ON_Quaternion ON_Quaternion::Conjugate | ( | ) | const |
Description: Returns the conjugate of the quaternion = (a,-b,-c,-d).
|
static |
Returns: The distance or norm of the difference between the two quaternions. = (p - q).Length().
double ON_Quaternion::DistanceTo | ( | const ON_Quaternion & | q | ) | const |
Returns: The distance or norm of the difference between the two quaternions. = ("this" - q).Length().
|
static |
Returns: exp(q) = e^a*( cos(|V|) + V/|V|*sin(|V|) ), where V = b*i + c*j + d*k.
bool ON_Quaternion::GetEulerZYZ | ( | double & | alpha, |
double & | beta, | ||
double & | gamma | ||
) | const |
Description: Find the Euler angles for a rotation transformation. Parameters: alpha - angle (in radians) to rotate about the Z axis beta - angle (in radians) to rotate about the Y axis gamma - angle (in radians) to rotate about the Z axis Details: When true is returned. this = RotationZYZ(alpha, beta, gamma) = R_z( alpha) * R_y(beta) * R_z(gamma) where R_*(angle) is rotation of angle radians about the corresponding *-world coordinate axis. Returns false if this is not a rotation. Notes: alpha and gamma are in the range (-pi, pi] while beta in in the range [0, pi]
bool ON_Quaternion::GetRotation | ( | double & | angle, |
ON_3dVector & | axis | ||
) | const |
Parameters: angle - [out] in radians axis - [out] unit axis of rotation of 0 if (b,c,d) is the zero vector. Returns: The rotation defined by the quaternion. Remarks: If the quaternion is not unitized, the rotation of its unitized form is returned.
bool ON_Quaternion::GetRotation | ( | ON_Plane & | plane | ) | const |
Parameters: plane - [out] Returns: The frame created by applying the quaternion's rotation to the canonical world frame (1,0,0),(0,1,0),(0,0,1).
bool ON_Quaternion::GetRotation | ( | ON_Xform & | xform | ) | const |
Description: The transformation returned by this function has the property that xform*V = q.Rotate(V). Parameters: xform - [out] Returns: A transformation matrix that performs the rotation defined by the quaternion. Remarks: If the quaternion is not unitized, the rotation of its unitized form is returned. Do not confuse the result of this function the matrix returned by ON_Quaternion::MatrixForm(). The transformation returned by this function has the property that xform*V = q.Rotate(V).
bool ON_Quaternion::GetYawPitchRoll | ( | double & | yaw, |
double & | pitch, | ||
double & | roll | ||
) | const |
Description: Find the Tait-Byran angles (also loosely called Euler angles) for this quaternion. Parameters: yaw - angle (in radians) to rotate about the Z axis pitch - angle (in radians) to rotate about the Y axis roll - angle (in radians) to rotate about the X axis Details: When true is returned. this = RotationZYX(yaw, pitch, roll) = R_z( yaw) * R_y(pitch) * R_x(roll) where R_*(angle) is rotation of angle radians about the corresponding world coordinate axis. Returns false if this is not a rotation. Notes: roll and yaw are in the range (-pi, pi] and pitch is in [-pi/2, pi/2]
ON_Quaternion ON_Quaternion::Inverse | ( | ) | const |
Returns: Sets the quaternion to a/L2, -b/L2, -c/L2, -d/L2, where L2 = length squared = (a*a + b*b + c*c + d*d). This is the multiplicative inverse, i.e., (a,b,c,d)*(a/L2, -b/L2, -c/L2, -d/L2) = (1,0,0,0). If "this" is the zero quaternion, then the zero quaternion is returned.
bool ON_Quaternion::Invert | ( | ) |
Description: Sets the quaternion to a/L2, -b/L2, -c/L2, -d/L2, where L2 = length squared = (a*a + b*b + c*c + d*d). This is the multiplicative inverse, i.e., (a,b,c,d)*(a/L2, -b/L2, -c/L2, -d/L2) = (1,0,0,0). Returns: True if successful. False if the quaternion is zero and cannot be inverted.
bool ON_Quaternion::IsNotZero | ( | ) | const |
Returns: True if a, b, c, and d are all valid, finite and at least one is non-zero.
bool ON_Quaternion::IsScalar | ( | ) | const |
Returns: True if b, c, and d are all zero.
bool ON_Quaternion::IsValid | ( | ) | const |
Returns: True if a, b, c, and d are valid finite IEEE doubles.
bool ON_Quaternion::IsVector | ( | ) | const |
Returns: True if a = 0 and at least one of b, c, or d is not zero.
bool ON_Quaternion::IsZero | ( | ) | const |
Returns: True if a, b, c, and d are all zero.
double ON_Quaternion::Length | ( | ) | const |
Returns: Returns the length or norm of the quaternion sqrt(a*a + b*b + c*c + d*d).
double ON_Quaternion::LengthSquared | ( | ) | const |
Returns: Returns a*a + b*b + c*c + d*d.
|
static |
Returns: log(q) = log(|q|) + V/|V|*acos(a/|q|), where V = b*i + c*j + d*k.
ON_Xform ON_Quaternion::MatrixForm | ( | ) | const |
Returns: 4x4 real valued matrix form of the quaternion
a b c d -b a -d c -c d a -b -d -c b a
which has the same arithmetic properties in as the quaternion. Remarks: Do not confuse this with the rotation defined by the quaternion. This function will only be interesting to math nerds and is not useful in rendering or animation applications.
ON_Quaternion ON_Quaternion::operator* | ( | const ON_Quaternion & | ) | const |
quaternion multiplication is not commutative
ON_Quaternion ON_Quaternion::operator* | ( | double | ) | const |
ON_Quaternion ON_Quaternion::operator* | ( | float | ) | const |
ON_Quaternion ON_Quaternion::operator* | ( | int | ) | const |
arithmetic operators
ON_Quaternion ON_Quaternion::operator+ | ( | const ON_Quaternion & | ) | const |
ON_Quaternion ON_Quaternion::operator- | ( | const ON_Quaternion & | ) | const |
ON_Quaternion ON_Quaternion::operator/ | ( | double | ) | const |
ON_Quaternion ON_Quaternion::operator/ | ( | float | ) | const |
ON_Quaternion ON_Quaternion::operator/ | ( | int | ) | const |
ON_Quaternion& ON_Quaternion::operator= | ( | const ON_3dVector & | v | ) |
(a,b,c,d) = (0,v.x,v.y,v.z)
|
static |
Returns: q^t = Exp(t*Log(q))
ON_3dVector ON_Quaternion::Rotate | ( | ON_3dVector | v | ) | const |
Description Rotate a 3d vector. This operation is also called conjugation, because the result is the same as
(q.Conjugate()*(0,x,y,x)*q/q.LengthSquared()).Vector()
Parameters: v - [in] Returns: R*v, where R is the rotation defined by the unit quaternion. This is mathematically the same as the values (Inverse(q)*(0,x,y,z)*q).Vector() and (q.Conjugate()*(0,x,y,x)*q/q.LengthSquared()).Vector() Remarks: If you need to rotate more than a dozen or so vectors, it will be more efficient to call GetRotation(ON_Xform& xform) and multiply the vectors by xform.
|
static |
Returns the quaternion obtained by rotating q0 towards q1 limiting the rotation by MaxRadians.
|
static |
Parameters: plane0 - [in] plane1 - [in] Returns: The unit quaternion that represents the the rotation that maps plane0.xaxis to plane1.xaxis, plane0.yaxis to plane1.yaxis, and plane0.zaxis to plane1.zaxis. Remarks: The plane origins are ignored.
|
static |
Parameters: angle - [in] in radians axis - [in] axis of rotation Returns: The unit quaternion
cos(angle/2), sin(angle/2)*x, sin(angle/2)*y, sin(angle/2)*z
where (x,y,z) is the unit vector parallel to axis. This is the unit quaternion that represents the rotation of angle about axis.
|
static |
Description: Returns a Quaternion defined by Tait-Byran angles (also loosely known as Euler angles). Parameters: yaw - angle (in radians) to rotate about the Z axis pitch - angle (in radians) to rotate about the Y axis roll - angle (in radians) to rotate about the X axis Details: RotationZYX(yaw, pitch, roll) = R_z( yaw) * R_y(pitch) * R_x(roll) where R_*(angle) is rotation of angle radians about the corresponding world coordinate axis. See Also: GetYawPitchRoll, RotationZYZ
|
static |
Description: Returns a Quaternion defined by Euler angles. Parameters: alpha - angle (in radians) to rotate about the Z axis beta - angle (in radians) to rotate about the Y axis gamma - angle (in radians) to rotate about the Z axis Details: RotationZYZ(alpha, beta, gamma) = R_z( alpha) * R_y(beta) * R_z(gamma) where R_*(angle) is rotation of angle radians about the corresponding *-world coordinate axis. See Also: GetEulerZYZ, RotationZYX
double ON_Quaternion::Scalar | ( | ) | const |
Returns: The "real" or "scalar" part of the quaternion = a.
void ON_Quaternion::Set | ( | double | qa, |
double | qb, | ||
double | qc, | ||
double | qd | ||
) |
Description: Sets the quaternion to the unit quaternion which rotates plane0.xaxis to plane1.xaxis, plane0.yaxis to plane1.yaxis, and plane0.zaxis to plane1.zaxis. Parameters: plane0 - [in] plane1 - [in] Remarks: The plane origins are ignored.
void ON_Quaternion::SetRotation | ( | double | angle, |
const ON_3dVector & | axis | ||
) |
Description: Sets the quaternion to
cos(angle/2), sin(angle/2)*x, sin(angle/2)*y, sin(angle/2)*z
where (x,y,z) is the unit vector parallel to axis. This is the unit quaternion that represents the rotation of angle about axis. Parameters: angle - [in] in radians axis - [in] axis of rotation Returns:
|
static |
bool ON_Quaternion::Unitize | ( | ) |
Description: Scales the quaternion's coordinates so that a*a + b*b + c*c + d*d = 1. Returns: True if successful. False if the quaternion is zero and cannot be unitized.
ON_3dVector ON_Quaternion::Vector | ( | ) | const |
Returns: The "vector" or "imaginary" part of the quaternion = (b,c,d)
double ON_Quaternion::a |
quaternion = a + bi + cj + dk
double ON_Quaternion::b |
double ON_Quaternion::c |
double ON_Quaternion::d |
|
static |
"i" = (0,1,0,0)
|
static |
1 = (1,0,0,0)
|
static |
"j" = (0,0,1,0)
|
static |
"k" = (0,0,0,1)
|
static |
0 = (0,0,0,0