#include <opennurbs_bezier.h>
◆ ON_PolynomialCurve() [1/4]
ON_PolynomialCurve::ON_PolynomialCurve |
( |
| ) |
|
◆ ON_PolynomialCurve() [2/4]
ON_PolynomialCurve::ON_PolynomialCurve |
( |
int |
dim, |
|
|
bool |
bIsRational, |
|
|
int |
order |
|
) |
| |
Description: See ON_PolynomialCurve::Create. Parameters: dim - [in] dimension of the curve bIsRational - [in] true if rational order - [in] (>=2) order = degree+1
◆ ~ON_PolynomialCurve()
ON_PolynomialCurve::~ON_PolynomialCurve |
( |
| ) |
|
◆ ON_PolynomialCurve() [3/4]
◆ ON_PolynomialCurve() [4/4]
◆ Create()
bool ON_PolynomialCurve::Create |
( |
int |
dim, |
|
|
bool |
bIsRational, |
|
|
int |
order |
|
) |
| |
Description: Initializes fields and allocates the m_cv array. Parameters: dim - [in] dimension of the curve bIsRational - [in] true if rational order - [in] (>=2) order = degree+1
◆ Destroy()
void ON_PolynomialCurve::Destroy |
( |
| ) |
|
Description: Deallocates the m_cv array and sets fields to zero.
◆ Evaluate()
bool ON_PolynomialCurve::Evaluate |
( |
double |
t, |
|
|
int |
der_count, |
|
|
int |
v_stride, |
|
|
double * |
v |
|
) |
| const |
Description: Evaluate a polynomial curve. Parameters: t - [in] evaluation parameter ( usually in Domain() ). der_count - [in] (>=0) number of derivatives to evaluate v_stride - [in] (>=Dimension()) stride to use for the v[] array v - [out] array of length (der_count+1)*v_stride curve(t) is returned in (v[0],...,v[m_dim-1]), curve'(t) is returned in (v[v_stride],...,v[v_stride+m_dim-1]), curve"(t) is returned in (v[2*v_stride],...,v[2*v_stride+m_dim-1]), etc. Returns: false if unable to evaluate.
◆ operator=() [1/2]
◆ operator=() [2/2]
◆ m_cv
coefficients ( m_cv.Count() = order of monomial )
◆ m_dim
int ON_PolynomialCurve::m_dim |
dimension of polynomial curve (1,2, or 3)
◆ m_domain
◆ m_is_rat
int ON_PolynomialCurve::m_is_rat |
1 if polynomial curve is rational, 0 if polynomial curve is not rational
◆ m_order
int ON_PolynomialCurve::m_order |
order (=degree+1) of polynomial